

Monday 19 May 2014 – Morning

AS GCE MATHEMATICS

4721/01 Core Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4721/01
- List of Formulae (MF1)

Other materials required: None Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

- 1 Express $5x^2 + 10x + 2$ in the form $p(x+q)^2 + r$, where p, q and r are integers.
- 2 Express each of the following in the form $k\sqrt{3}$, where k is an integer.

(i)
$$\frac{6}{\sqrt{3}}$$
 [1]

[4]

[5]

[4]

(ii)
$$10\sqrt{3} - 6\sqrt{27}$$
 [2]

(iii)
$$3^{\frac{1}{2}}$$
 [2]

3 Find the real roots of the equation $4x^4 + 3x^2 - 1 = 0$.

- 4 The curve y = f(x) passes through the point *P* with coordinates (2, 5).
 - (i) State the coordinates of the point corresponding to *P* on the curve y = f(x) + 2. [1]
 - (ii) State the coordinates of the point corresponding to P on the curve y = f(2x). [1]
 - (iii) Describe the transformation that transforms the curve y = f(x) to the curve y = f(x+4). [2]
- 5 Solve the following inequalities.

(i)
$$5 < 6x + 3 < 14$$
 [3]

(ii)
$$x(3x-13) \ge 10$$
 [5]

6 Given that $y = 6x^3 + \frac{4}{\sqrt{x}} + 5x$, find (i) $\frac{dy}{dx}$,

(ii)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$$
. [2]

- 7 *A* is the point (5, 7) and *B* is the point (-1, -5).
 - (i) Find the coordinates of the mid-point of the line segment *AB*. [2]
 - (ii) Find an equation of the line through A that is perpendicular to the line segment AB, giving your answer in the form ax + by + c = 0 where a, b and c are integers. [5]

- 8 A curve has equation $y = 3x^3 7x + \frac{2}{x}$.
 - (i) Verify that the curve has a stationary point when x = 1. [5]

[2]

[4]

- (ii) Determine the nature of this stationary point.
- (iii) The tangent to the curve at this stationary point meets the *y*-axis at the point Q. Find the coordinates of Q. [2]
- 9 A circle with centre C has equation $(x-2)^2 + (y+5)^2 = 25$.
 - (i) Show that no part of the circle lies above the *x*-axis. [3]
 - (ii) The point P has coordinates (6, k) and lies inside the circle. Find the set of possible values of k. [5]
 - (iii) Prove that the line 2y = x does not meet the circle.
- 10 A curve has equation $y = (x+2)^2(2x-3)$.
 - (i) Sketch the curve, giving the coordinates of all points of intersection with the axes. [3]
 - (ii) Find an equation of the tangent to the curve at the point where x = -1. Give your answer in the form ax + by + c = 0. [9]

END OF QUESTION PAPER

Mark Scheme

Question		л	Answer	Marks	Guidance	
1			$5x^{2} + 10x + 2 = 5(x^{2} + 2x) + 2$ = 5[(x + 1) ² - 1] + 2 = 5(x + 1) ² - 3	B1 B1 M1 A1 [4]	p = 5 q = 1 2-5 "their q" ² or $\frac{2}{5}$ - "their q" ² Must be evidence of squaring r = -3	If p, q and r found correctly, then ISW slips in format. $5(x + 1)^2 + 3$ B1 B1 M0 A0 5(x + 1) - 3 B1 B1 M1 A1 (BOD) $5(x + 1 x)^2 - 3$ B1 B0 M1 A0 $5(x^2 + 1)^2 - 3$ B1 B0 M1 A0 $5(x - 1)^2 - 3$ B1 B0 M1 A0 $5 x (x + 1)^2 - 3$ B0 B1M1A0
2	i)		2√3	B1 [1]	cao	Do not accept $\frac{6\sqrt{3}}{3}$
	ii)		$10\sqrt{3} - 18\sqrt{3}$ -8 $\sqrt{3}$	B1 B1 [2]	$\sqrt{27} = 3\sqrt{3}$ soi, not just $\sqrt{9}\sqrt{3}$	
	iii)		$3^{\frac{5}{2}} = 3^2 \times 3^{\frac{1}{2}}$ $9\sqrt{3}$	B1 B1 [2]	Separate $\sqrt{3}$ from $3^{\frac{5}{2}}$	Allow only $3 \times 3 \times 3^{\frac{1}{2}}$, $3^2 \times \sqrt{3}$, $3 \times 3 \times \sqrt{3}$, or $\sqrt{81}\sqrt{3}$, $3\sqrt{9}\sqrt{3}$ for first mark
3			$k = x^{2}$ $4k^{2} + 3k - 1 = 0$ $(4k - 1)(k + 1) = 0$ $k = \frac{1}{4}, k = -1$ $x = \pm \sqrt{\frac{1}{4}}$ $x = \pm \frac{1}{2}$	M1* M1dep* A1 M1 A1 [5]	Substitute for χ^2 Attempt to solve resulting quadratic Correct values of k soi Attempt to square root Final answers correct, no extras	No marks if whole equation square rooted etc. No marks if straight to formula with no evidence of substitution at start and no square rooting/squaring at end. If factorising into two brackets: $(4x^2 - 1)(x^2 + 1) = 0$ M1 A1 $(2x + 1) (2x - 1)(x^2 + 1) = 0$ M1 A1 A1 as before Spotted solutions: If M0 DM0 or M1 DM0 SR B1 $x = \frac{1}{2}$ www SC B1 $x = -\frac{1}{2}$ www

Q	uestio	n Answer	Marks	Guidance	
					exactly two solutions justified)
4	i)	(2, 7)	B1 [1]		
	ii)	(1, 5)	B1 [1]		
4	iii)	Translation -4 units parallel to the <i>x</i> axis	B1 B1 [2]	Translation Correct description e.g. correct vector (not as a coordinate), "4 units to the left" Do not allow se cond B1 after incorrect type of transformation e.g. stretch/rotation etc. but allow after shift/move etc.	Do not accept shift/move etc. for first B1 For "parallel to the <i>x</i> axis" allow "horizontally", "in the <i>x</i> direction". Do not accept "in/on/ across/up/along/to/towards the <i>x</i> axis". Do not accept "factor 4" etc. Allow extra if not incorrect.
5	i)	$5-3 \le 6x \le 14-3$ $2 \le 6x \le 11$ $\frac{1}{3} \le x \le \frac{11}{6}$	M1 A1 A1 [3]	Attempt to solve two equations/inequalities each involving all 3 terms 2, 11 seen from correct inequalities www Award full marks if initially working with equations but final answer correct.	Allow " $\frac{1}{3} < x$ and $x < \frac{11}{6}$ " " $\frac{1}{3} < x, x$ $< \frac{11}{6}$ " but do not allow " $\frac{1}{3} < x$ or $x < \frac{11}{6}$ "
	ii)	$3x^{2} - 13x - 10 \ge 0$ (3x+2)(x-5) \ge 0 $x \le -\frac{2}{3}, x \ge 5$	M1* M1dep* A1 M1 A1 [5]	Expands and rearranges to collect all terms on one side Correct method to find roots $-\frac{2}{3}$, 5 seen as roots Chooses "outside region" for their roots of their quadratic Do not allow strict inequalities for final mark	See guidance at end of mark scheme e.g. $-\frac{2}{3} \ge x \ge 5$ scores M1A0 Allow " $x \le -\frac{2}{3}, x \ge 5$ ", " $x \le -\frac{2}{3}$ or $x \ge 5$ " but do not allow " $x \le -\frac{2}{3}$

4721

Mark Scheme

Q	uestic	Answer Marks		Guidance		
					and $x \ge 5$ " SC If question "misread" as $x(3x - 13) \ge 0$ Roots found as 0, $\frac{13}{3}$ B1 $x \le 0, x \ge \frac{13}{3}$ etc. as above B1, max 2/5	
6	i)	$y = 6x^{3} + 4x^{-\frac{1}{2}} + 5x$ $\frac{dy}{dx} = 18x^{2} - 2x^{-\frac{3}{2}} + 5$	B1 M1 A1 A1 [4]	$\frac{4}{\sqrt{x}} = 4x^{-\frac{1}{2}}$ soi Attempt to differentiate, any term correct Two correct terms Fully correct, no "+c"		
6	ii)	$\frac{d^2 y}{dx^2} = 36x + 3x^{-\frac{5}{2}}$	M1 A1 [2]	Attempt to differentiate their $\frac{dy}{dx}$ cao www in either part	Any term still involving $x \operatorname{correct} -$ follow through from their expression for the M mark only	
7	i)	$\left(\frac{5+-1}{2},\frac{7+-5}{2}\right)$ (2, 1)	M1 A1 [2]	Correct method to find midpoint of line	At least 3 out of 4 terms correctly substituted	
	ii)	Gradient of AB = $\frac{75}{51} = 2$ Perpendicular gradient = $-\frac{1}{2}$ $y - 7 = -\frac{1}{2}(x - 5)$ x + 2y - 19 = 0	B1 B1ft M1 A1ft [5]	Gradient of AB correctly found as 2 Fully processed $\frac{-1}{\text{their gradient}}$ Equation of straight line through A or B, any non-zero gradient Equation of straight line through A only, their perpendicular gradient, in any form Correct equation in given form	i.e. $k(x + 2y - 19) = 0$ for integer k. Must have "=0".	

Mark Scheme

Question		on	Answer	Marks	Guidance		
8	i)		$\frac{dy}{dx} = 9x^2 - 7 - 2x^{-2}$ When $x = 1$, $\frac{dy}{dx} = 9 - 7 - 2 = 0$ Therefore a stationary point	M1* A1 A1 M1dep A1 [5]	Attempt to differentiate, any term correct Two correct terms Fully correct Substitute $x = 1$ into their derivative Correctly obtain zero www and state conclusion AG	<u>Alternative for the last two marks:</u> Sets derivative to zero and makes valid attempt to solve resulting quartic M1dep Correctly establishes $x = 1$ as solution and draws clear conclusion A1www	
8	ii)		$\frac{d^2y}{dx^2} = 18x + 4x^{-3}$ When x =1, $\frac{d^2y}{dx^2} > 0$ so minimum	M1 A1 [2]	Correct method to find nature of stationary point e.g. substituting $x = 1$ into second derivative (at least one term correct from their first derivative in (i)) No incorrect working seen in this part i.e. if second derivate is evaluated, it must be 22.	 Alternate valid methods include: 1) Evaluating gradient at either side of 1(x >0) 2) Evaluating y at 1 and either side of 1 (x >0) If using alternatives, working must be fully correct to obtain the A mark 	
8	iii)		When $x=1, y=-2$ (0, -2)	B1 B1 [2]	Finding $y = -2$ at $x = 1$ Correct coordinate www	~	
9	i)		y coordinate of the centre is -5 Radius = 5 Centre is five units below x axis and radius is five, so just touches the x-axis	B1 B1 B1 [3]	Correct y value Correct radius Correct explanation based on the above – allow clear diagram www	$\frac{\text{Alt}}{\text{Shows only meets } x \text{ axis at one point } \mathbf{B1}}$ Correct y value for the centre B1 Correct explanation B1 www	
9	ii)		$CP^{2} = (6-2)^{2} + (k+5)^{2}$ $CP^{2} < 25 \implies 16 + k^{2} + 10k + 25 < 25$ $k^{2} + 10k + 16 < 0$ $(k+2)(k+8) < 0$ $-8 < k < -2$	M1 A1 A1 M1 A1 [5]	Attempt to find <i>CP</i> or <i>CP</i> ² Correct three term quadratic expression* k = -2 and $k = -8$ found Chooses "inside region" for their roots of their quadratic Must be strict inequalities for the A mark * Or $(k + 5)^2 < 9$	Alternative Puts $x = 6$ to into equation of circle M1 Correct three term quadratic equation*, could be in terms of y A1 k = -2 and $k = -8$ found (allow y) A1 Then as main scheme * Or $(k + 5)^2 = 9$ SC Trial and improvement B2 if final answer correct (B1 if inequalities are not strict)	

Question		on	Answer	Marks	ks Guidance	
						Can only get 5/5 if fully explained
	iii)		$(2y-2)^2 + (y+5)^2 = 25$	M1*	Attempts to eliminate x or y from	If y eliminated:
			$5y^2 + 2y + 4 = 0$		equation of circle	$5x^2 + 4x + 16 = 0$
			$b^2 - 4ac = 4 - 4 \times 5 \times 4$	A1	Correct three term quadratic obtained	$b^2 - 4ac = 16 - 4 \times 5 \times 16$
			=-76	M1dep*	Correct method to establish quadratic has	= -304
			< 0, so line and circle do not meet		no roots e.g. considers value of b^2-4ac ,	No marks for purely graphical
					tries to find roots from quadratic formula	atte mpts
				A1	Correct clear conclusion www AG	
				[4]	D	7 7 1 1 1 1 1
10	i)			B1	Positive cubic with max and min	For first mark must clearly be a cubic –
				D 1		must not stop at either axis, do not allow
				BI	Correct y intercept – graph must be	straight line sections/tending to extra
				D1	drawn	turning points etc.
			-2 $\left \frac{3}{2} \right $	BI	Double root shown at $r = -2$ and single	
					Double root shown at $x = -2$ and single	
					root at $x = \frac{3}{2}$ with no extras – graph must	
			-12		2 2 1	
				[3]	be drawn	
	ii)		$x^2 + 4x + 4$ or $2x^2 + x - 6$	B1	Obtain one quadratic factor	Check for working for this in 10 (i)
				M1	Multiply their three term quadratic by	8
					linear factor to obtain at least 5 term	Alternative using product rule:
			$2x^3 + 5x^2 - 4x - 12$	A1	cubic	Clear attempt at product rule M1*
			dv a state t	M1*	If simplified, must be correct	Differentiates $(x + 2)^2$ correctly A1
			$\frac{dy}{dx} = 6x^2 + 10x - 4$		Attempt to differentiate (power of at least	Both expressions fully correct A2 (1
			dx		one term involving x reduced by one)	each), then as main scheme
				M1dep*		
			When $y = 1$ are diant = 9	A1ft	Substitutes to find gradient at $x = -1$	
			when $x = -1$, gradient 6		Correct gradient found it their	
				D 1	derivative, differentiation of their	warrent hanne hanne framed als wet allow and
			When $r = -1$, $v = -5$	BI M1	this mark	y must have been found, do not allow use
			y + 5 = -8(x + 1)	IVII	Correct v value	or gradient of normal instead of tangent
					Correct equation of straight line through	
					(-1 their v) their oradient from	
			8x + y + 13 = 0	A1	differentiation	k(9x + y + 12) = 0 M (1)
				111		1.e. $n(0x + y + 13) = 0$. Must have
1				1		··=0″.

Question	Answer	Marks	Guidance	
		[9]	Correct answer in correct form	Note If $x = 1$ used instead of $x = -1$, then max possible from last 5 marks is M1 M1 only

APPENDIX 1

Solving a quadratic

This is particularly important to mark correctly as it features several times on the paper. Consider the equation: $3x^2 - 13x - 10 = 0$

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the **correct quadratic term** and **one other correct term** (with correct sign):

(3x+5)(x-2)	M1	$3x^2$ and -10 obtained from expansion
(3x-4)(x-3)	M1	$3x^2$ and $-13x$ obtained from expansion
(3x+5)(x+2)	M0	only $3x^2$ term correct

2) If the candidate attempts to solve by using the formula

a) If the formula is quoted incorrectly then M0.

b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0

$$\frac{\frac{-13 \pm \sqrt{(-13)^2 - 4 \times 3 \times -10}}{2 \times 3}}{\frac{13 \pm \sqrt{(-13)^2 - 4 \times 3 \times 10}}{2 \times 3}}$$

slip)

$$\frac{\frac{-13 \pm \sqrt{(-13)^2 - 4 \times 3 \times 10}}{2 \times 3}}{\frac{13 \pm \sqrt{(-13)^2 - 4 \times 3 \times -10}}{2 \times -10}}$$

earns M1 (minus sign incorrect at start of formula)

earns M1 (10 for c instead of -10 is the only sign

M0 (2 sign errors: initial sign and c incorrect)

M0 (2c on the denominator instead of 2a)

Notes – for equations such as $3x^2 - 13x - 10 = 0$, then $b^2 = 13^2$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for *a* in both occurrences in the formula would be two sign errors and score **M0**.

c) If the formula is not quoted at all, substitution must be completely correct to earn the M1

3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm ; we are looking for evidence that the candidate knows a quadratic has two solutions!

$$3x^{2} - 13x - 10 = 0$$

$$3\left(x^{2} - \frac{13}{3}x\right) - 10 = 0$$

$$3\left[\left(x - \frac{13}{6}\right)^{2} - \frac{169}{36}\right] - 10 = 0$$
This is where the M1 is awarded – arithmetical errors may be condoned provided $x - \frac{13}{6} = \pm \sqrt{\frac{289}{36}}$